5-10 Appendixes
Appendix-1 Derivation of Eq. (34)  
 Eq. (33) is given by

f C (ε) / X (φ) = P (ε) / (X (ε) - X (φ))

(1-1)  
where, from Eq. (29),  

                            f C (ε) =η (ε) I, II + C I, II (ε) + G (ε)

(1-2)  
Eq. (1-1) is changed to be:  

                            f C (ε) = P (ε) / (X (ε) / X (φ) - 1)

(1-3)

                            X (ε) / X (φ) = 1+ P (ε) / fC (ε)                                     

                                                    = ( f C (ε) + P (ε) ) / f C (ε)         

(1-4)

                            X (φ) / X (ε) = f C (ε) / ( f C (ε) + P (ε) )

(1-5)
                                                                  
Eq. (17) is  given by: 

P (ε) =QM (ε) +AXI (ε) +AXII (ε) - C I, II (ε) - η (ε) I, II - G (ε)

(1-6)
                                          

From Eq. (1-2) and Eq. (1-6), we have  

f C (ε) + P (ε) = QM (ε) +AXI (ε) +AXII (ε)

(1-7)
Eq. (31) is  given by:                                                              

QM (ε) = X (ε) - DX (ε) - AXI (ε) - AXII (ε)

(1-8)  
From Eq. (1-7) and Eq. (1-8), we obtain  
                        f C (ε) + P (ε)    

= X (ε) - DX (ε): denominator of Eq. (1-5)

(1-9)
Appendix-2 Derivation of break-even sales equation corresponding to Solomos’s problem when the 1st and the 2nd kinds of manufacturing overhead applied exist 
The two equations, which give the break-even point, are the line-1 given by Eq. (2-1) and the line-2 given by Eq. (2-2) in Fig. 3.

                      QM  / f (ε) + X / (f (ε) / tan αXI (ε))=1

(2-1)

                      QM = - AXII (ε) + tan β (ε) ·X                 

(2-2)
where

                      tan αXI (ε) = (AXI (ε) - GV (ε)) / X (ε)

(2-3)
                      tan β (ε) = ( AXII (ε) + QM (ε)) / X (ε)     (2-4)

                      f (ε) =f C (ε)  - AXII (ε)

(2-6)

                      f C (ε) =η (ε) I, II + C I, IIF (ε) + GF (ε) 

(2-7)
     
Eq. (2-3) has been obtained referring to Eq. (9) in reference (3). In Eq. (2-3) and in Eq. (2-7), the superscripts V and F represent variable cost and fixed cost, respectively. Consequently we have the following equation:

                            G (ε) = GF (ε) + GV (ε)

(2-8)
                                                                                                  
Eq. (2-1) is changed to be

                            QM (ε) + tan αXI (ε) X (ε)= f (ε)

(2-9)
At the break-even sales X (φ),  Eq. (2-9) and Eq. (2-2) become:
                            QM (φ) + tan αXI (ε) X (φ)= f (ε) (2-10)

                            QM (φ) = - AXII (ε) + tan β (ε) X (φ)

(2-11
                                                              
Substituting Eq. (2-11) into Eq. (2-10) gives

               − AXII (ε) + tan β (ε) X (φ) + tan αXI (ε) X (φ) = f (ε)

(2-12
Eq. (2-12) is changed to be

                    ( tan αXI (ε) + tan β (ε) )X (φ) = f (ε) + AXII (ε)

X (φ) =( f (ε) + AXII (ε) ) / (tan αXI (ε) + tan β (ε) )

2-13
In Eq. (2-13) , the numerator and the denominator are:
                       f (ε) + AXII (ε) = f C (ε)

                           = η I, II (ε) + C I, II (ε) + GF (ε)                      

2-14
                       tan αXI (φ) + tan β (ε)

    = (AXI (ε) - GV (ε)) / X (ε) +( AXII (ε) + QM (ε)) / X (ε) 

                       = (AXI,II (ε) - GV (ε) + QM (ε) ) / X (ε) (2-15)
From Eq. (31), we have

QM (ε) = X (ε) - DX (ε) - AXI (ε) - AXII (ε)

(2-16)

                     

Substituting Eq. (2-16) into Eq. (2-15) gives
                               tan αXI (ε) + tan β (ε)

=(X (ε) - DX (ε) - GV (ε) ) / X (ε)

(2-17)
Therefore, we have

X (φ) / X (ε) = (η I, II (ε) + C I, II (ε) + GF (ε) ) / (X (ε) - DX (ε) - GV (ε) )

2-18)
When C I, II (ε)= C I, IIF (ε) + C I, IIV (ε), by similarity between ∆AHF and ∆DHC, fixed cost terms always go to numerator and variable cost terms always go to denominator in Eq. (2-18). 
Appendix-3  Relationship between 45° break-even chart and managed gross profit chart
When GV (ε) =0 and αXI (ε) is denoted as α,  the relationship between the 45° break-even chart and the managed gross profit chart is shown in Fig. 3-1. 

Fig. 3-1 Relationship between 45° break-even chart and managed gross profit chart

When  GV (ε)=0, from Eq. (2-3) and Eq. (2-4) and Eq. (2-17), we have

                             tan αXI (ε) = AXI (ε)  / X (ε)

(3-1)
                             tan β (ε) = ( AXII (ε) + QM (ε)) / X (ε)        (3-2)
                             tan αXI (ε) + tan β (ε)=(X (ε) − DX (ε) ) / X (ε) (3-3)
From Fig. Appendix-1, we obtain
                   P(ε) = (X (ε) - X(φ)) ( tan αXI (ε) + tan β (ε)) (3-4)
                   P(ε) = (X (ε) - X(φ))   (X (ε) - DX (ε) ) / X (ε) (3-5)
                   P(ε) / X (ε)  =  (1 - X(φ) / X (ε)) ·(1- DX (ε) / X (ε) )   (3-6)
                   tanγ(ε) = DX (ε) / X (ε) : Variable ratio (3-7)
                    tan αXI (ε) + tan β (ε) + tanγ(ε) = 1 (3-8)
                   P(ε) = (X (ε) - X(φ)) · (1- tan γ(ε) ) (3-9)
Appendix-4 45°- gross profit chart
From Eq. (19)  in the section of "Outline of managed gross profit chart theory" , we have
               P (ε) = QM (ε) - Q M ξ (ε)  (4-1)
               QM ξ (ε) = G F (ε) + δ (ε) 
                             = G F (ε) +C (ε) - AX (ε) + η (ε) (4-2)
Eq. (4-1) is transformed to be:
               QM (ε) =  P (ε) /(1 - Q M ξ (ε) / QM (ε)) (4-3)
Eq. (4-3) means Fig. 4-1. 
      

 Fig. 4-1 45°- gross profit chart